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SUMMARY 
Handler, Hendricks and Leighton have recently reported results for the direct numerical simulation (DNS) 
of a turbulent channel flow at moderate Reynolds number. These data are used to evaluate the terms in the 
exact and modelled transport equations for the turbulence kinetic energy k and the isotropic dissipation 
function E. Both modelled transport equations show significant imbalances in the high-shear region near the 
channel walls. The model for the eddy viscosity is found to yield distributions for the production terms which 
do not agree well with the distributions calculated from the DNS data. The source of the imbalance is 
attributed to the wall-damping function required in eddy viscosity models for turbulent flows near walls. 
Several models for the damping function are examined, and it is found that the models do not vary across the 
channel as does the damping when evaluated from the DNS data. The Lam-Bremhorst model and the 
standard van Driest model are found to give reasonable agreement with the DNS data. Modification of the 
van Driest model to include an effective origin yields very good agreement between the modelled production 
and the production calculated from the DNS data, and the imbalance in the modelled transport equations is 
significantly reduced. 
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1. INTRODUCTION 

During the past three decades the fluid dynamics community has focused considerable attention 
on the development of techniques and capabilities for the calculation of turbulent flow fields. 
Increases in available computational capabilities have permitted researchers to develop and test 
increasingly sophisticated and complete models for the numerical simulation of turbulent flows. 
The state of the art has reached a point where direct numerical simulations of turbulent flows at 
low-to-moderate Reynolds numbers are feasible. Such work has been reported in several studies, 
including those by Kim et al.’ and Handler et aL2 In these simulations the unsteady 
Navier-Stokes equations are solved numerically. All essential scales of the turbulent flow are 
resolved and no subgrid modelling of the turbulence is employed. Such calculations, however, 
are feasible only for research purposes, and calculations of turbulent flows for engineering pur- 
poses utilize the time-averaged Navier-Stokes equations coupled with some level of turbulence 
modelling. 

For many applications the model of choice is the two-equation k--E model. This model for 
turbulence transport came into use in the early 1970s based largely on the work of HanjaliC and 
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Launder3 and Launder et aL4 and became a standard because of its relative simplicity and success 
in providing good predictions for a large range of turbulent flows. In spite of some significant 
shortcomings in the k--E model, it still retains a position as the standard for comparison. 

In the development of the k-c model, attention has been focused on high-Reynolds-number 
flows such as thin shear layers, and the constants in the model have been chosen to give 
agreement with experimental data for these flows. Consequently, the predictive capabilities of the 
model are best for strongly turbulent flows. For flows near fixed surfaces, adjustments to the 
model are needed. In References 3 and 4, boundary layer flows were treated by matching the high- 
Reynolds-number flow with wall functions, e.g. ‘law-of-the-wall’ profiles, at the first grid point 
away from the wall. In that way the model did not have to be directly modified for the low- 
Reynolds-number flow adjacent to the wall. In work since then, Hanjalik and Launder’ and a 
number of researchers have proposed extensions to the basic high-Reynolds-number model that 
would enable the k-c model to be directly used all the way to the wall. Patel et ~ 1 . ~  reviewed a 
number of near-wall models and found that while the better ones did quite well, there were still 
areas where improvement was needed. One of the limitations in the development of near-wall 
models has been the difficulty in making accurate and reliable measurements of the flow 
quantities near the wall so that some of the correlations that are needed in improving the k--E 
model cannot be obtained experimentally. 

Data from direct numerical simulations of turbulent flows can be used in place of experi- 
mental data in evaluating and improving the near-wall turbulence models. Mansour et a1.’ have 
used the data of Kim et al.’ to analyse the terms in the modelled transport equations for the 
Reynolds stresses and for E. They have also used those data to analyse the terms in the modelled 
transport equation for the turbulence kinetic energy.s They show that some of the models are 
inadequate but do not make specific recommendations for improvement. In this study we use the 
direct simulation data of Handler et ul.’ to examine the terms in the k--E model, with particular 
emphasis on the behaviour of the terms near the wall. Since the wall damping for the eddy 
viscosity has a crucial role in the accuracy of any near-wall k--E model, we use the direct 
simulation data to examine the three models which Patel et aL6 found to perform well and two 
other models. In the next two sections we discuss briefly the direct simulation calculations and the 
exact and modelled k--E transport equations. In Section 4 we evaluate the terms in the exact and 
modelled transport equations and compare the damping given by the near-wall models with the 
damping indicated by the direct simulation data. We then show that improved agreement 
between the exact and modelled results can be obtained. 

2. DIRECT NUMERICAL SIMULATION 

Numerical methods are being developed at the U.S. Naval Research Laboratory (NRL) for the 
direct numerical simulation (DNS) of turbulent flows. Much of the background for this effort is 
provided in the study by Handler et ul.,’ hereinafter referred to as HHL. In their report, HHL 
review several numerical methods for pseudo-spectral calculations and present the results of 
applying these methods to the computation of turbulent channel flows. Several calculations 
parametrized by the extent of the physical domain, grid resolution and Reynolds number are 
described. In this study we use the Chan 1.1 data of HHL. This is one of their lower-resolution 
(spatial) data sets; however, it is one for which complete velocity and pressure are available 
at widely spaced time intervals, thus insuring that the separate realizations are statistically 
independent. 

In units of channel half-width h the channel dimensions are 2 x 5 x 5 in the vertical (x2), 
streamwise (xl) and lateral (x3) directions respectively. The flow is computed with 16 x 64 evenly 
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spaced grid points in the horizontal (xI-x~) plane and 33 points with Chebyshev scaling are used 
in the x,-direction. The Reynolds number Re is 2215 based on h and U,,, the initial laminar 
centreline velocity. The governing equations are non-dimensionalized by the wall shear velocity, a 
viscous length unit and a viscous time unit. The wall shear velocity u, is given by 

The viscous length unit (or wall unit) is 1, = v/u, and the viscous time unit is t,  = v/uf . In the non- 
dimensionalized units the Reynolds number based on the wall shear velocity is 125. This is lower 
than the wall Reynolds number of 180 for the Kim et al.' (hereinafter referred to as KMM) data 
and the grid resolution of the Chan 1.1 data is lower. HHL conclude, however, that the mean 
statistics of their data set compare well with experiment and with the more highly resolved data of 
KMM insofar as one-point statistics are concerned. 

The equations are solved using a pseudo-spectral method in which Chebyshev expansion is 
used in the wall normal (x,) direction and Fourier series are used in the streamwise (xl) and 
spanwise (x,) directions. The domain size in wall units is 640,250 and 640 in the xl-, x2- and x3- 
direction respectively. In the x,-direction the use of Chebyshev polynomials gives a variable step 
size, with Ax, x0.6 at the wall and Ax, x 12 at the channel centre. In the xl- and x,-direction the 
step size is uniform and is Ax, ~ 4 0  and Ax, x 10 respectively. In the computed data set used in 
the present work there are 33 distinct realizations of the velocity and pressure fields which are 
separated by 50 viscous time units. This separation in time is sufficient to insure that each 
realization of the fields is statistically independent. 

We denote the instantaneous values of variables by uppercase symbols, the time-averaged 
values with an overbar and the fluctuations from the time averages by lowercase symbols so that, 
for example, 

u i ( t ) = ~ + u i ( t ) ,  P ( t ) = P + p ( t )  

Also, we denote the turbulence intensities as uj = &. The velocity field in the channel is periodic 
in the xl- and x,-direction so that averaging over the xI-x3 plane at each value of x2 gives 
dependent variable profiles which are functions of the wall normal co-ordinate (xt). Averages are 
obtained by summing the individual profiles over 33 separate realizations. Correlations of the 
fluctuating variables such as u, u2 are computed by forming the product at each grid point in the 
domain, averaging over the x1-x3 plane and then averaging over the 33 realizations. 

The primary averaged data from the direct numerical simulation of channel flow by HHL are 
shown in Figures 1 and 2. Figure 1 shows the mean streamwise velocity 6 and the root mean 
square (RMS) of the pressure fluctuations p'. The velocity profile shows a fully developed 
turbulent flow profile with a channel centre value of 17. The RMS of the pressure fluctuations 
shows peaks of 1.9 at y / h  = f 100. At the channel centre, p' has a minimum value less than 1.0. The 
values at the walls are between 1.2 and 1.3. These data are described in HHL and are noted to be 
in overall good agreement with KMM considering the differences in Reynolds number. Figure 2 
shows the turbulence intensities u; ,  u;, uj and the Reynolds shear stress u1u2. The Reynolds 
shear stress shows peak values of +O-65 at y / h =  +95 and linear variation over the interval 
- 85 < y / h  < 85. The averaged data in these figures exhibit excellent overall symmetry between the 
channel walls. It is noted by HHL that the locations of the peak values of u: are in excellent 
agreement with the data of KMM and experimental data, although the maxima are slightly 
lower. The variances are attributable to the different Reynolds numbers in the simulations and, to 
a lesser extent, to the finer resolution of the KMM data. 

~ 

~ 
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Figure 1. Profiles of mean streamwise velocity U1 and root mean square of pressure fluctuations p' from the direct 
simulation data of Handler et al.' 
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Figure 2. Profiles of turbulence intensities and Reynolds shear stress from the HHL data 
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3. THE k-E TRANSPORT EQUATIONS 

Exact transport equations 

The two-equation k--E model for turbulent flow requires transport equations for the turbulence 
kinetic energy k and for E, the rate of dissipation of turbulence energy. The exact equation for the 
transport of turbulence kinetic energy is obtained from the sum of the transport equations for the 
three normal Reynolds stresses, and for incompressible fluids is given by Hinzeg as 

- 

auj auj Dk - a u .  a __ a a2 
Dt 1 J axi  axi axi ax iax i  axi axi k-v---, -= - u . u .  J-- ( u i k ' ) - - (  $)+v- 

where k' is half the sum of the normal stresses and k is its averaged value, and D/Dt is the 
substantial derivative. 

The terms on the right-hand side correspond to rate of (i) production of turbulence kinetic 
energy, (ii) kinetic energy diffusion, (iii) pressure diffusion, (iv) viscous diffusion and (v) viscous 
dissipation of turbulence kinetic energy. Term (v) is strictly the viscous dissipation only for 
homogeneous turbulence. However, as pointed out by a reviewer, it may be shown to apply 
also in high-Reynolds-number inhomogeneous turbulence since in that case 

~ 

aui aui a2uiuj 

axj  axj  ax iax j  &=V--+V- 

and the last term is negligible in high-Reynolds-number flows. 

Navier-Stokes equations. We use the form given by HanjaliC and L a ~ n d e r , ~  
The exact transport equation for the dissipation rate E is derived from the unsteady 

(4 (ii) (iii) (iv) (v) 

u & + - 2 - - v -  
p ax, ax,  ax, 

aui auk ( a 2v au ap 

), -G( , -2v----2 v- DE -= 
Dt ax, ax, ax,  ax, ax, 

where 

(vi) (vii) (viii) 

The first term (i) on the right-hand side of (2) represents turbulent production of E and term (ii) 
represents dissipation of E.  Terms (iii), (iv) and (v) represent turbulent transport, pressure 
transport and viscous diffusion respectively. Terms (vi), (vii) and (viii) are production terms. 

The individual terms in (1) and (2) have been calculated from the DNS data of HHL. For the 
channel flow simulations the mean flow is homogeneous in the horizontal co-ordinate directions 
so that E=f(x2) and U ,  = U ,  =O. Because of symmetry with respect to planes normal to the 
spanwise direction, all correlations involving u, and uneven derivatives with respect to x3 are 
zero. Products such as upi  are formed at each grid point in the domain; the correlation is then 

- -  
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averaged over the x1-x3 plane to give a profile in x,. The x,-profiles are then averaged over the 
33 realizations in the saved data set. In forming the averages of the terms we make use of the 
symmetry (in the mean) of the channel flow about the centreline. In the following figures we use 
the wall normal distance y +  =yuJv with origin at the wall, whereas in the preceding figures we 
used y / h  with origin at the channel centre. 

The individual terms in (1) are shown in Figure 3. In this and the following figures a gain 
denotes a term contributing to a local increase in the transported quantity and a loss denotes a 
term contributing to a local decrease. The two dominant terms are the production and 
dissipation. The dissipation is small at the channel centre and increases towards the wall, with its 
maximum at the wall. The production is zero at the channel centre and at the wall and has a 
maximum at y + = 20. The kinetic energy diffusion (or turbulent transport) balances the dissipa- 
tion at the channel centre, goes to zero at about y +  = 35, has a minimum at y+ =20, is positive for 
y +  < 10 and is zero at the wall. The viscous diffusion (or gradient diffusion) is very small for 
y +  > 25, has a minimum at y +  = 15 and has a maximum at the wall where it balances the 
dissipation. The pressure diffusion (or pressure-velocity correlation) is very small across the 
channel. 

As seen in Figure 4, across most of the channel the principal contribution to the transport of E 

comes from terms (i) and (ii). Near the wall (for y +  < 25) terms (vi) and (vii) become significant 
contributors and very near the wall (for y +  < 3) term (v) becomes a major contributor. At the wall 
it is term (v) which balances term (ii). The other three terms ((iii), (iv) and (viii)) contribute very 
little to the transport of E in the channel and are not shown in this figure. 

For engineering calculations of turbulent flows the k--E model is adequate for many appli- 
cations, but (1) and (2) cannot be used directly. The terms involving the fluctuating velocity and 
pressure components must be modelled. The models which are in use have been developed on the 
basis of order-of-magnitude analysis of the transport equations and contain empirical constants 
which have been determined from experimental data. The experimental database is incomplete 
because of difficulties of measuring some of the terms in the exact equations. The data from the 
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Figure 3. Budgets of the terms of the exact k-transport equation for incompressible flow: production term 9 ( + ); kinetic 
energy diffusion ( x ); pressure diffusion ( 0 ); viscous diffusion of k ( A ); homogeneous viscous dissipation E ( 0 ) 
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Figure 4. Budgets of the principal terms of the exact &-transport equation: turbulent production of E (0);  dissipation 
of E (0); viscous diffusion ( x ); production terms (vi) (0) and (vii) ( A ) 

direct simulations permit a precise examination of the terms in the transport equations and a 
direct evaluation of the turbulence models. 

Modelled transport equations 

The derivation of the modelled transport equations is given by Rodi" and others. Central to 
the development of the models is the representation of the Reynolds stresses using the Boussinesq 
eddy viscosity relation. For fully developed channel flow, are zero, as are the 
derivatives of the averaged turbulence variables in the xl- and x,-direction. Also, the time 
derivatives of k and E are zero and the modelled transport equations reduce to the form 

and 

& E Z  -=o=- v+-  - +c,,-9-c,,-, 
Dt 8x2 a [( k k 
DE 

where 

(4) 

Commonly accepted values of the constants gk, c,, C,, and C,, are 1.0, 1-3, 1-44 and 1.92 
respectively. In (3, C,, is a constant andf,, is a function to be determined by comparison with 
experimental data. For flows such as thin shear layers,f,, = 1.0 and the commonly accepted value 
for C,, is 0.09, based on experimental flows for which the production 9 and dissipation E are in 
approximate balance. However, as noted by Rodi,lo for flows in which B and E are unequal the 
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predictive ability of the k--E model is improved by using C,, as a function of 9/& such as the one 
which he determined from correlating experimental data. For wall-bounded flows,f,, is the wall- 
damping function and is chosen to approach 1.0 when the flow is not influenced by the wall so as 
to be consistent with the thin shear layer model. Also, for wall-bounded flows the last term in (4) 
tends to infinity as the wall is approached since E is non-zero and k +  goes to zero at the wall. 
HanjaliC and Launder5 alleviate this problem by replacing - E ~  by 6, where 

and the term G / k  is bounded as x2 goes to zero. Other researchers (see e.g. the review by Patel et 
d6) use a different expression for Z and/or a near-wall-damping function which drives the overall 
term to zero at the wall. Additionally, Launder and Sharma" and others use a transport equation 
for E" instead of E (as described in Reference 6). 

4. EVALUATION OF THE k-E MODEL 

One of the significant differences between the k--E turbulence model and models which require 
additional transport equations is in the treatment of the Reynolds stress terms G. In the models 
using separate equations for the transport of the Reynolds stresses, the terms are solved as 
unknown variables and higher-order terms are modelled. In the k--E model the Reynolds stress 
terms are modelled using the eddy viscosity as given in (5c). The accuracy of this model is then 
central in considering the accuracy of the k--E model. 

Iff,, is taken to be 1.0, the k--E model corresponds to the standard high-Reynolds-number 
model. Using the HHL data we have calculated the exact Reynolds shear stress and the shear 
stress as modelled by ( 5 )  with C,, = 0.09 andf,, = 1.0. The comparison of those data shows that the 
modelled shear agrees well with the exact shear in the centre of the channel but that in the near- 
wall region the modelled term is much larger than the Reynolds shear stress computed from the 
DNS data. The comparison shows that a damping term is required to bring the modelled 
Reynolds stress into better agreement with that calculated from the simulation data. 

A number of researchers have focused attention upon application of the k-c turbulence model 
in near-wall flows. Patel et ~ 1 . ~  reviewed eight near-wall models of which seven were k--E models. 
They found that three of the k--E models performed reasonably well but that even those three 
models were in need of refinement. One of their principal conclusions was that an improved 
damping function for the eddy viscosity should be selected which was in agreement with 
experimental data and whose influence was restricted to the sublayer and the buffer zone. 

In the modelled k-transport equation the terms for production, kinetic energy diffusion and 
pressure diffusion are modelled by expressions which involve v, and thus f,. By calculating the 
individual terms on the right-hand side of (3) using the direct simulation data of HHL, we find 
that the production term is the term most affected by changes in the wall-damping function. 
Similarly, for the modelled &-transport equation the production term is the term which is most 
affected by changes in v,. 

In the following we consider the wall damping of the three k--E models which Patel et aL6 found 
to perform well. These are the models of Launder and Sharma," Chien12 and Lam and 
Bremh~rst. '~ We also include the van Driest14 wall-damping model in our consideration. In the 
Launder-Sharma model the wall-damping function is given by 

f ,  = exp[ - 3.4/( 1 + (64 
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where RT is a Reynolds number of turbulence given by RT = k2/ve .  The wall-damping function is 

f ,  = 1 -exp( -O.O115y+) 

f ,  = [ 1 - exp( - 0.0165R,)]2 (1 + 20-5 /RT)  

(6b) 

(6c) 

for the Chien model and 

for the Lam-Bremhorst model, where R,  is also a Reynolds number of turbulence and is given by 
R, = k1I2 y / v .  With the van Driest model the wall-damping function is given by 

f ,  = [1  -exp(-y+/A+) l2 ,  ( 6 4  

where A +  is a constant of the turbulence and 26.0 is the generally accepted value. In the 
Launder-Sharma and Chien models we use the appropriate expression for E" (see Reference 6) 
instead of E in the formulae for vt and RT. 

We show in Figure 5 a comparison of the exact production term as calculated using the DNS 
data and the modelled production term withf, = 1.0. Noting the change in scale between Figure 5 
and Figure 3, it is clearly seen that the modelled production is much too large in the neigh- 
bourhood of y +  = 15. Also shown in Figure 5 is the modelled production term using the wall- 
damping function from the Launder-Sharma model and the Chien model. In order to obtain 
agreement with the DNS data, much more damping is required for y +  < 40 than is provided by 
the Launder-Sharma model, and the Chien model requires more damping for y +  < 20. For both 
models, agreement with the exact production term would be improved if E were used in the 
expression for v, instead of El, and with the Chien damping the modelled term would be in close 
agreement with the exact term. 

In Figure 6 we compare the exact production term with the modelled term using the 
Lam-Bremhorst and van Driest wall-damping models. In Figure 6 the axis scales are the samr. as 
in Figure 3 and it is seen that the Lam-Bremhorst model gives better agreement with the DNS 
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Figure 5. Comparison of the exact k-transport equation production term (0) with the undamped modelled term ( x ), the 
modelled term damped with the Launder-Sharma damping (+) and the Chien wall damping (0) 
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Figure 6. Comparison of the exact k-transport equation production term (0) with the modelled term using the 
Lam-Bremhorst wall damping (+) and the standard van Driest wall damping ( A )  

data for y +  < 25. At y +  x 20 the van Driest model yields a higher value for 9 than is given by the 
DNS data or the Lam-Bremhorst model. For y +  > 25 the Lam-Bremhorst model gives values of 
9 less than the values from the van Driest model and the DNS data. 

Since the principal variable in modelling the production term is the wall-damping function, the 
modelled production can be brought into better agreement with B calculated from the DNS data 
with an improved wall-damping function. Figure 7 shows the damping functions from the Chien, 
Lam-Bremhorst, Launder-Sharma and van Driest models. The figure also includes the distribu- 
tion off, when it calculated from the DNS data using 

In evaluating (7), C,  is chosen so that the calculated& goes to 1.0 at the channel centre. For this 
channel flow, C, = 0.115 givesf, = 1.0 at the channel centre. Since at the wall k = 0 and at the 
channel centre a q / d x ,  = 0, evaluation of (7) is limited to the interval 0 -= y +  < 125. 

Also included in Figure 7 as the filled rectangles are some of the data for& which Patel et al. 
derived from experimental data and presented in their Figure 2. The experimental data were 
calculated" from the data for k + ,  uu' and E +  using the mean curves shown in Figure 1 of 
Reference 6 and d U f / d y +  from equation (12) of Reference 6. It is difficult to assess the accuracy 
of the values off, derived from the experimental data, especially since some of the terms in E 

cannot be measured near a wall. Patel et al. show the mean curve for E following the pipe data of 
Laufer16 and he determined that the dissipation summed across the cross-section agreed with the 
total production of k +  to within 10%. 

As calculated from the DNS data using (7), f ,  has a minimum value of 0.04 at y +  = 6 and 
then increases towards the wall. Such a characteristic also appears in the experimental data of 
Patel et al. forf,. The experimental data for& are in good agreement with the HHL data and 
show a non-zero minimum at about y+  = 7. Expansion of the terms of (7) in Taylor series about 
y +  = 0 shows that for small y' ,  u1 = ay+  + . . . , U, + by" + . . . , uluz  + C Y + ~  + . . . , 
E' + d + ey+ + . . . and k'  + gy+' + . . . . Since near the wall a q / a x ,  is constant, the damping 
function in (7) must vary as h / y +  + j  + . . . . The result of this simple analysis is difficult to 
work with since it contains a singularity, but it does indicate that f ,  should have a minimum 

~ 
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Figure 7. Comparison of the wall-damping function& from the experimental data of Patel et a[. (m ), calculated from the 
HHL data, equation (7) (0), from the Chien model (0), the Lam-Bremhorst model (+), the Launder-Sharma model ( x )  

and the standard van Driest model (A). For HHL data, C,,=0.115 to givef,=l.O at channel centre. 

located off the wall. None of the wall-damping models vary as l / y +  for small y +  and most go to 
zero instead of to a non-zero minimum. 

As shown in Figure 7, the Launder-Sharma model damping is the least like the DNS or the 
experimental data, while across most of the channel the van Driest model is closest to the DNS 
data. However, in the neighbourhood of y +  = 10, where the production is greatest, the 
Lam-Bremhorst damping model agrees best with the DNS data and thus the Lam-Bremhorst 
model gives the best overall agreement for the maximum value of the production term, as seen 
earlier. 

Of the four damping models shown in Figure 7,& for the van Driest model is the most similar 
tof, from the HHL data. Introducing an effective origin y ;  in (7) improves the agreement with& 
from the HHL data. Agreement is further improved by modifying the equation so that f ,  has a 
minimum value& corresponding to the minimum from the HHL data. With these modifications 
the damping function is given by 

& = & + ( I  -&){1-exp[-(y+ - Y ; ) I A + 1 ) 2 .  (8) 
Figure 8 shows a comparison betweenf, from the HHL data and& from (8) with yO+ = 8 and 
& = 0.04. The agreement is seen to be very good. Also shown in this figure are the experimental 
data from Patel et al. which were included in Figure 7. The modifications to the van Driest wall- 
damping function seem to be consistent with the experimental data and give very good agreement 
with the direct simulation data. Withf, given by (8) and with C, = 0.1 15 the modelled production 
term agrees very well with the exact production term from the HHL data as is shown in Figure 9. 

With the modified van Driest model forf,, most of the imbalance in the budget of the terms in 
the modelled k-transport equation is contributed by the model for the sum of the pressure 
diffusion and kinetic energy diffusion terms. Figure 10 shows the overall imbalance for the 
modelled k-transport equation and the difference in the modelled and exact diffusion terms. For 
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Figure 8. Comparison of the wall-damping function& from the experimental data of Pate1 et al. ( W), calculated from the 
HHL data, equation (7), with C,,=0.115 (0) and from the modified van Driest model, equation (18), with y,+ =8 and 
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Figure 9. Comparison of the exact k-transport equation production term (0) with the production term modelled using 
the modified van Driest wall damping ( A )  
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Figure 10. Comparison of the imbalance in the modelled k-transport equation ( A and + )with the difference between the 
model for the diffusion terms and the diffusion terms from the DNS data ( 0), for uh = 1.0 ( A ) and uh = 0.6 ( + ) 
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y +  < 25 the difference in the modelled and exact diffusion terms is greater than the imbalance in 
the k-transport equation. It is possible to bring the model for the diffusion terms into slightly 
better agreement with the DNS data by adjusting the value of uk. For example, the dashed line in 
Figure 10 denotes the overall imbalance in the modelled turbulence kinetic energy transport 
equation when a value ok = 0.6 is used in the evaluation of the diffusion term. Further reduction 
of the imbalance is not obtained with other values of uk. Better agreement is needed between the 
exact and modelled diffusion terms in order to decrease the imbalance further. The shape of the 
modelled term is not sufficiently similar to the shape of the terms from the exact transport 
equation, and a different functional is needed to improve the agreement between the modelled 
and exact diffusion terms. 

The imbalance in the budget of the modelled &-transport equation is also reduced with the 
modified van Driest wall damping. The diffusion term is quite small except very close to the wall 
and is essentially unaffected by the wall-damping models. The dissipation term is independent of 
the eddy viscosity and is here evaluated using &/k. The production term is a major term and is 
directly proportional to the eddy viscosity. Figure 11 shows the distribution of the production 
terms and the overall imbalance using the Lam-Bremhorst and modified van Driest wall- 
damping models. The amount of imbalance is reduced by about one-half with the modified van 
Driest wall-damping model. 

We have also investigated how further reductions in the imbalance of the modelled &-transport 
equation might be obtained. For example, as noted by Mansour et al.,7 the shape of term (ii) 
would be difficult to model while the combination of term (ii) with term (v) might be easier to 
model. However, no terms in the modelled equation correspond to the combination of terms (ii) 
and (v) in the exact equation. The production term in the modelled equation should correspond to 
either a combination of terms (vi) and (vii) or terms (i), (vi) and (vii) in the exact equation, but it 
does not agree well with either combination in shape or magnitude. Changes in the empirical 
constants in the modelled &-transport equation do little to reduce the imbalance further. Thus we 
find that further improvements in the modelling of the e-transport equation will require different 
model representations than are currently used. 

The DNS data also make it possible to evaluate the validity of one of the basic assumptions of 
developing the k--E model: that the production and dissipation of turbulence kinetic energy are in 
approximate balance. This assumption is valid for many flows but does not hold well for the 
channel. For the channel the production term must be zero at the wall and at the channel centre 
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Figure 11.  Comparison of the production terms (A and 0) and the imbalance (0 and + ) in the modelled e-transport 
equation using the Lam-Bremhorst ( 0 and +, connected by dashed lines) and modified van Driest ( A and 0, connected 

by solid lines) wall damping 
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Figure 12. Distribution across the channel of the ratio of the production of turbulence kinetic energy, 8, to the 

dissipation rate E as calculated from the direct simulation data 
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Figure 13. The eddy viscosity coefficient C(y) as a function of the ratio of the production of turbulence kinetic energy, 8, 
to the dissipation rate E from the HHL direct simulation data (0), together with data from Rodi's correlation of 

experimental data ( H )  

since = 0 at the wall and a c / a x ,  = 0 at the channel centre. The variation across the 
channel of the ratio P/& from the DNS data is shown in Figure 12. The peak value of 9/& is 
approximately 1.9 and occurs in the near-wall region at y +  = 15. For 10 < y +  c 35 the ratio is 
greater than 1.0, but averaged across the channel 9'/& is 07 .  Thus for the channel a value for C, 
other than 0.09 is appropriate. Our use of C, = 0.115 with the modified van Driest damping 
function was based on using that value in (7) in order to obtain& = 1.0 in the channel centre. 

The larger value of C, is also suggested by the data which Rodi" gives from his correlation of 
experimental data for C, as a function of P/&. Representative values of that data are shown as the 
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filled symbols in Figure 13. Those data show that C,  varies inversely with 9/&. Denoting as C , ( y )  
the product of C, and&, we show in Figure 13 the values of C,(y) from the DNS data for the 
channel plotted versus 9/& in the region away from the wall. This also shows a distribution of 
CJy) versus 9/& where C,(y) tends to vary inversely with 9/&, except that C,(y) tends to level off 
to about 0.12 as 9/& decreases instead of continuing to increase as 9/& + 0 as is the case in Rodi's 
data. 

5. CONCLUSIONS 

In this study we have performed an evaluation of the k--E turbulence model using the direct 
numerical simulation data of Handler et al. for turbulent channel flow. With the DNS data we 
have evaluated the terms of the exact k--E transport equations and have found nearly exact 
agreement with the budget data presented by Mansour et al. Evaluation of the terms of the 
modelled transport equations shows the necessity of using a wall-damping function in the 
modelling of the eddy viscosity. From the HHL direct simulation data we have determined the 
shape required for a damping function to obtain agreement between the modelled turbulence 
kinetic energy production term and that calculated from the DNS data. We have shown that the 
well-accepted Lam-Bremhorst wall-damping model gives reasonable agreement with the DNS 
data. 

We have also examined a number of currently used wall-damping models. The Lam- 
Bremhorst wall-damping model gives better agreement with the HHL direct simulation data than 
do the models of Chien and of Launder and Sharma. Compared with the van Driest damping 
model, the Lam-Bremhorst damping model gives better modelling of the production term near 
the wall where production is largest, but in the central part of the channel the van Driest damping 
models the production better. Except for a small region near the wall, the van Driest wall 
damping agrees best with the damping distribution calculated from the direct simulation data. 
Modification of the van Driest damping model to include an effective origin and a non-zero 
minimum gives very good agreement between the modelled production and the production 
calculated from the HHL data. With the modified van Driest damping function the principal 
contribution to the imbalance in the budget for the modelled turbulence kinetic energy transport 
equation comes from the model used for the sum of the pressure diffusion and kinetic energy 
diffusion terms. 

We also find that the modified van Driest wall-damping function reduces the imbalance in the 
&-transport equation when compared with the Lam-Bremhorst model. Further improvements in 
the modelling of the k- and &-transport equations may be accomplished with the use of different 
functionals for the production and dissipation terms. 
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